Search results for "Extremal solution"

showing 4 items of 4 documents

A nonlinear eigenvalue problem for the periodic scalar p-Laplacian

2014

We study a parametric nonlinear periodic problem driven by the scalar $p$-Laplacian. We show that if $\hat \lambda_1 >0$ is the first eigenvalue of the periodic scalar $p$-Laplacian and $\lambda> \hat \lambda_1$, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparison techniques.

PhysicsApplied MathematicsScalar (mathematics)AnalysiGeneral MedicineMathematics::Spectral TheoryLambdaSecond deformation theoremParametric equationNonlinear systemp-LaplacianConstant sign and nodal solutionExtremal solutionDivide-and-conquer eigenvalue algorithmParametric equationAnalysisEigenvalues and eigenvectorsParametric statisticsMathematical physics
researchProduct

A multiplicity theorem for parametric superlinear (p,q)-equations

2020

We consider a parametric nonlinear Robin problem driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation). The reaction term is \((p-1)\)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.

Pure mathematicsnonlinear maximum principlelcsh:T57-57.97General MathematicsMathematics::Analysis of PDEssuperlinear reactionMultiplicity (mathematics)extremal solutionsSettore MAT/05 - Analisi Matematicalcsh:Applied mathematics. Quantitative methodsConstant sign and nodal solutionExtremal solutionnonlinear regularityconstant sign and nodal solutionscritical groupsCritical groupMathematicsParametric statisticsOpuscula Mathematica
researchProduct

Nonlinear vector Duffing inclusions with no growth restriction on the orientor field

2019

We consider nonlinear multivalued Dirichlet Duffing systems. We do not impose any growth condition on the multivalued perturbation. Using tools from the theory of nonlinear operators of monotone type, we prove existence theorems for the convex and the nonconvex problems. Also we show the existence of extremal trajectories and show that such solutions are $C_0^1(T,\mathbb{R}^N)$-dense in the solution set of the convex problem (strong relaxation theorem).

Pure mathematicsApplied MathematicsRegular polygonSolution setPerturbation (astronomy)Dirichlet distributionDuffing systemNonlinear systemsymbols.namesakeMonotone polygonNonlinear operator of mono-tone typeGrowth restrictionSettore MAT/05 - Analisi MatematicaConvex optimizationStrong relaxationssymbolsExtremal solutionAnalysisMathematics
researchProduct

On Noncoercive (p, q)-Equations

2021

We consider a nonlinear Dirichlet problem driven by a (p, q)-Laplace differential operator (1 < q < p). The reaction is (p - 1)-linear near +/-infinity and the problem is noncoercive. Using variational tools and truncation and comparison techniques together with critical groups, we produce five nontrivial smooth solutions all with sign information and ordered. In the particular case when q = 2, we produce a second nodal solution for a total of six nontrivial smooth solutions all with sign information.

Dirichlet problemTruncationGeneral MathematicsMathematical analysisGeneral Physics and AstronomyDifferential operator(pq)-LaplacianNonlinear systemextremal solutionsprincipal eigenvalueSettore MAT/05 - Analisi Matematicanonlinear regularityconstant sign and nodal solutionsSign (mathematics)Mathematics
researchProduct